Modern data stack is a comprehensive framework and set of tools designed to efficiently collect, process, analyze, and visualize data in a well-integrated cloud-based data platform. The main characteristics of a modern data stack include robustness, speed, and scalability. Compared to traditional fragmented architectures, the core assumption of the modern data stack is unified access to data across the business.

A typical modern data stack consists of the following:

  • Cloud data warehouse
  • Extract, Load, Transform (ELT) tools
  • Data ingestion/integration services
  • Reverse Extract, Transform, Load (ETL) tools
  • Data orchestration tools
  • Business intelligence (BI) platforms

The entire premise behind a modern data stack is to create an end-to-end flow of data from acquisition to integration, to persistence – where every layer is centered around the analytics platform.

Further reading:


  • University website personalization: First-party data strategies for student recruitment and retention

    University websites receive millions of visits annually from diverse audiences – prospective students, admitted students weighing their options, current undergraduates, graduate students, parents, alumni, and faculty. Yet most institutions serve identical content to all these visitors, missing critical opportunities to engage each audience with relevant information.

  • Digital marketing in the energy sector: Key challenges and fixes

    Summary The European energy and utilities sector is changing quickly. Customers expect smooth digital experiences, personalized communication, and easy access to their data. At the same time, regulators continue to tighten privacy and security standards across the EU. For marketing teams, this creates a familiar dilemma – how to deliver relevant, data-driven experiences while staying…