Anonymized data is a type of data that has been processed to remove any personally identifiable information (PII) or personal data. Such data is often used in research, analytics, and other data-driven activities, as well as for compliance with privacy regulations.

According to GDPR, anonymized data has been altered in such a way that it can’t be used to identify a specific person. Since anonymized data can’t be restored, it isn’t considered personal data under GDPR. This means it is exempt from GDPR.

Some examples of compliant data anonymization methods include:

  • Randomization:
  1. Noise addition – Where personal identifiers are expressed imprecisely, for instance: height: 180 cm → height 320 cm
  2. Substitution – Where personal identifiers are shuffled within a table or replaced with random values, for instance: ZIP: 10120 → ZIP: postcode
  • Generalization:
  1. Aggregation – Where personal identifiers are generalized into a range or group, for instance: age: 30 → age: 20-35

Removing any identifiable information from a dataset allows for meaningful analysis without compromising the privacy of individuals.

Examples of use cases for anonymized data include:

  • Measuring the effectiveness of marketing campaigns.
  • Analyzing the behavior of website or mobile app users.
  • Analyzing trends and patterns.

Further reading:


  • Banking website analytics for financial services: Tracking without compromising customer trust

    You don’t have to choose between insights and trust – modern banking analytics can deliver both when implemented correctly. This article explores best practices and recommended steps for banking website analytics, as well as ways to avoid common pitfalls to ensure compliance without sacrificing the quality of insights.

  • Five things every marketer should know about web analytics in 2026

    Web analytics is changing fast. AI is moving from buzzword to actual business impact, privacy rules keep shifting on both sides of the Atlantic, and marketing teams are rethinking their tool stacks. What does this mean for analytics strategy in 2026? We asked industry experts to share their predictions.