Extract, Transform, Load (ETL)

Extract, Transform, Load (ETL) is a crucial data integration process that enables organizations to consolidate data from multiple sources into a unified data repository and derive actionable insights from them.

In the ETL process, data is extracted from various source systems, transformed to meet business requirements, and then loaded into a data warehouse for analysis and reporting. This flow is from operational systems to a centralized data repository. The primary goal of ETL is to consolidate and prepare data for analysis by transforming it into a structured format suitable for reporting and business intelligence.

Another process is Reverse ETL, which involves extracting data from a data warehouse and loading it back into operational systems or applications. This process pushes data downstream to where businesses can leverage analytical insights in real time.

Learn more:


  • Five things every marketer should know about web analytics in 2026

    Web analytics is changing fast. AI is moving from buzzword to actual business impact, privacy rules keep shifting on both sides of the Atlantic, and marketing teams are rethinking their tool stacks. What does this mean for analytics strategy in 2026? We asked industry experts to share their predictions.

  • first party data

    First-party analytics without consent: Your Digital Omnibus compliance guide

    The Digital Omnibus is the European Commission’s simplification initiative to modernize the EU’s digital rulebook and reduce consent fatigue. The framework would enable first-party analytics without consent when specific criteria are met, ending years of uncertainty about the use of legitimate interest for web statistics.